Search results for "Steel fiber"

showing 10 items of 12 documents

Performance of Steel Fibrous Reinforced Concrete Corbels Subjected to Vertical and Horizontal Loads

2009

A softened strut-and-tie macromodel able to reproduce the flexural behavior of corbels in plain and fibrous concrete and with the presence of steel bars, including softening of compressed struts and yielding of main and secondary steel bars, is presented in this paper. The main focus of the proposed model is the determination of the load-deflection curves of corbels subjected to the coupled effects of vertical and horizontal forces bearing in mind the influence of the type of concrete (normal or high strength), of the fiber percentage and of the arrangement and percentage of the main and secondary (horizontal stirrup) steel bars. A validation of the proposed model is made therefore with ref…

Bearing (mechanical)Materials scienceHorizontal and verticalbusiness.industryMechanical EngineeringBuilding and ConstructionStructural engineeringFiber-reinforced concretereinforced concreteStirruplaw.inventionFlexural strengthsteel fiberMechanics of MaterialslawCorbelShear strengthGeneral Materials ScienceGeotechnical engineeringshear strengthSettore ICAR/08 - Scienza Delle CostruzionibusinessSofteningCivil and Structural EngineeringJournal of Structural Engineering
researchProduct

Steel-concrete bond in lightweight fiber reinforced concrete under monotonic and cyclic actions

2005

Experimental results of the local bond stress-slip relationship of reinforcing bars embedded in lightweight fiber reinforced concrete with expanded clay aggregates are presented. The effect of the following parameters were investigated: - dimension of specimens; - anchorage length; - percentages of hooked steel fibers; - geometrical ratio of transverse reinforcement; - confinement external transverse pressure. Prismatic specimens with deformed steel bars embedded for a fixed length equal to five and eight equivalent diameters were tested under both monotonic and cyclic reversal imposed displacements at the tip of the bars, in controlled displacement tests. The influence of the above mention…

Bond strengthEngineeringBond strengthbusiness.industryMonotonic functionStructural engineeringFiber-reinforced concreteSteel fiberPhysics::Classical PhysicsPaint adhesion testinglaw.inventionLightweight concreteTransverse planeSettore ICAR/09 - Tecnica Delle CostruzionilawCyclic loadComposite materialMonotonic loadMaterial propertiesbusinessDuctilityDisplacement (fluid)ConfinementCivil and Structural Engineering
researchProduct

Some comments on the experimental behavior of FRC beams in flexure

2008

In the present paper the experimental results, recently obtained by the authors, regarding the monotonic and the cyclic flexural response of normal and high-strength concrete beams reinforced with steel bars and discontinuous fibers, are shown. From the experimental results, all referred to low values of shear-to-depth ratios, it emerges clearly that the shear failure is brittle especially under cyclic actions highlighting the role of the fibers in the flexural behavior of the beams. The cyclic action produces a significant decay in the stiffness and in the strength capacity of the beams, and the addition of fibers reduces these negative effects. Form theoretical point of view good agreemen…

Concrete beamsMaterials scienceDeformation (mechanics)business.industrydesignStiffnessStructural engineeringshear and flexural strengthshearPhysics and Astronomy (all)Settore ICAR/09 - Tecnica Delle CostruzioniBrittlenessShear (geology)Flexural strengthCreepsteel fibermedicinebeammedicine.symptombusinesscyclic action
researchProduct

Mechanical Behavior of Steel Fiber-Reinforced Concrete Beams Bonded with External Carbon Fiber Sheets

2017

This study investigates the mechanical behavior of steel fiber-reinforced concrete (SFRC) beams internally reinforced with steel bars and externally bonded with carbon fiber-reinforced polymer (CFRP) sheets fixed by adhesive and hybrid jointing techniques. In particular, attention is paid to the load resistance and failure modes of composite beams. The steel fibers were used to avoiding the rip-off failure of the concrete cover. The CFRP sheets were fixed to the concrete surface by epoxy adhesive as well as combined with various configurations of small-diameter steel pins for mechanical fastening to form a hybrid connection. Such hybrid jointing techniques were found to be particularly adva…

Digital image correlationMaterials science020101 civil engineering02 engineering and technologyFiber-reinforced concreteArticle0201 civil engineeringlaw.inventionBrittlenesslawResidual stressadhesive-mechanical connectionGeneral Materials ScienceFiberComposite materialexternal CFRP sheetsConcrete coverbusiness.industrydebonding failureStructural engineering021001 nanoscience & nanotechnologymechanical testingsteel fibers reinforced concreteadhesive-mechanical connection; debonding failure; external CFRP sheets; mechanical testing; steel fibers reinforced concreteAdhesiveDeformation (engineering)0210 nano-technologybusinessMaterials
researchProduct

Behavior of fiber-reinforced concrete columns under axially and eccentrically compressive loads

2010

An experimental investigation into the behavior of 16 short, confined, reinforced concrete columns with and without steel fibers was carried out. The columns with square sections had a concrete core 165 x 165 mm (6.49 x 6.49 in.) at the midsection and were hunched at the ends to apply eccentric loading and prevent boundary effects. The specimens were tested to failure at different strain rates under two loading schemes: concentric compression and eccentric compression with a constant eccentricity. The axial load and axial strains were obtained to evaluate the effects of the presence of steel fibers, the thickness of the cover concrete, and the eccentricity of the applied axial load. The com…

Materials scienceCompressive testbusiness.industryColumnmedia_common.quotation_subjectStructural engineeringFiber-reinforced concreteSteel fiberBuilding and ConstructionSpallCompression (physics)Confined concretelaw.inventionSettore ICAR/09 - Tecnica Delle CostruzioniMoment-curvature diagramlawUltimate tensile strengthEccentricity (behavior)Composite materialbusinessAxial symmetryDuctilityConcrete covermedia_commonCivil and Structural Engineering
researchProduct

Simple Plastic Model for Shear Critical SFRC Beams

2010

A simple physical model, for prediction of ultimate shear strength of steel fiber reinforced concrete (SFRC) beams is developed on the basis of a plastic approach originally proposed for reinforced concrete (RC) beams without stirrups. It is founded on the hypothesis that cracks can be transformed into yield lines, and thus is know as Crack Sliding Model (CSM). First, the CSM is improved in order to take into account the shear strength increase for deep beams, due to the arch effect. Then, the effectiveness factors for fibrous concrete under biaxial stresses are evaluated, taking into account the post-cracking tensile strength of SFRC and its ability to control slippage along shear cracks. …

Materials sciencebusiness.industryMechanical EngineeringBuilding and ConstructionStructural engineeringFiber-reinforced concreteReinforced concreteSteel fibre reinforced concrete plastic theory design shear critical beamSteel fiber-reinforced concrete; Plastic theory; Shear critical beamslaw.inventionSettore ICAR/09 - Tecnica Delle CostruzioniCrackingShear (geology)Mechanics of MaterialslawUltimate tensile strengthShear strengthGeneral Materials ScienceGeotechnical engineeringSlippageArchbusinessCivil and Structural EngineeringJournal of Structural Engineering
researchProduct

Behaviour in compression of lightweight fiber reinforced concrete confined with transverse steel reinforcement

2004

Abstract The compressive behavior of lightweight fiber reinforced concrete confined with transverse reinforcement consisting of steel stirrups or spirals was analyzed. Pumice stone and expanded clay aggregates were utilized to decrease the weight of the composite; hooked steel fibers were also added. The investigation was carried out by testing cylindrical and prismatic specimens of different sizes in compression using an open-loop displacement control machine, recording the full load–deformation curves. The influence of the dimensions and shape on the bearing capacity and on the ductility of the specimens confined with transverse steel reinforcements was analyzed. The results show the poss…

Materials sciencebusiness.industryStress–strain curveComposite numberlightweight concrete pumice stone expanded clay steel fibers steel transverse reinforcement compression tests stress-strain curves shape effectsBuilding and ConstructionFiber-reinforced concreteStructural engineeringCompression (physics)law.inventionTransverse planelawGeneral Materials ScienceBearing capacityComposite materialReinforcementDuctilitybusiness
researchProduct

Steel fiber-reinforced concrete corbels:experimental behavior and shear strength prediction

2007

Corbels are structural members often used in reinforced concrete structures to transfer vertical and horizontal forces to principal members. This paper presents experimental research regarding the flexural behavior of corbels in plain and fibrous concrete and in the presence of steel bars. The study considers the influence of the type of concrete grade (normal- and high-strength concretes), of the fiber percentage and of the arrangement and percentage of the steel bars on the flexural behavior of the corbels. The results in terms of load-deflection curves and crack patterns show the effectiveness in using fibrous reinforced concrete corbels as well as in the presence of stirrups ensuring ad…

Materials sciencebusiness.industrycorbels reinforced concrete shear strength steel fibers stirrupsBuilding and ConstructionStructural engineeringFiber-reinforced concretelaw.inventionTypes of concreteCrackingFlexural strengthCorbellawDeflection (engineering)Reinforced solidBearing capacityComposite materialbusinessCivil and Structural Engineering
researchProduct

Fibrous reinforced concrete beams in flexure: Experimental investigation, analytical modelling and design considerations

2008

Abstract The flexural behavior of plain and fibrous reinforced concrete (FRC) beams under monotonic and cyclic actions was analysed. Twelve beams were reinforced with top and bottom longitudinal deformed steel bars and transverse steel stirrups. Concrete, having 30 MPa cylindrical strength, was reinforced with hooked steel fibres at a volume percentage of 1%. Beams, 600 mm in length and with a square side cross-section of 150 mm, were tested in flexure using a three point bending test, adopting three different cover thicknesses of 5, 15 and 25 mm, respectively. The results obtained show that the addition of fibers increases the bearing capacity of the beams and ensures more ductile behaviou…

Materials sciencecyclic loadbusiness.industryThree point flexural testStructural engineeringFiber-reinforced concreteCompression (physics)short beamlaw.inventionShear (sheet metal)Settore ICAR/09 - Tecnica Delle Costruzionishear-moment interactionFlexural strengthfiber reinforced concretesteel fiberReinforced solidlawShear strengthBearing capacityComposite materialbusinessCivil and Structural EngineeringEngineering Structures
researchProduct

Flexural behaviour of concrete corbels containing steel fibers or wrapped with FRP sheets

2005

In the present paper an analytical and experimental investigation referring to the flexural behaviour of reinforced concrete corbels subjected to vertical forces is presented. For fixed shape and dimensions of the corbels the experimental investigation analyses the effects of the following: longitudinal and transverse steel reinforcements; fiber reinforced concrete (FRC) with hooked steel fibers; external wrapping retrofitting technique with a thin layer of carbon fiber sheet (CFRP). The analytical model based on equivalent truss structures, allows one to determine the bearing capacity of corbels, distinguishing the different ultimate states reached. The analytical results are then compared…

Materials scienceflexural behaviourTrussBendingFiber-reinforced concretelaw.inventionexperimental investigationFlexural strengthCorbellawconfinement effectGeneral Materials ScienceBearing capacityCFRPComposite materialCivil and Structural EngineeringR.C. corbelbusiness.industryFRCBuilding and ConstructionStructural engineeringFibre-reinforced plasticSettore ICAR/09 - Tecnica Delle Costruzionisteel fiberMechanics of MaterialsSolid mechanicsMaterials Science (all)businessMaterials and Structures
researchProduct